TL494 – universali mikroschema, 6 dalis

Testuodami įrenginius ne perkraukit jų, stenkitės apkrovimą daryti kiek galima labiau simetrišką. Kai su oscilografu testuojį schemą pageidautina atjungti neoninę lemputę ir vietoje jos, prie transformatoriaus apvijos prijungiam paprasta rezistorių.

Some oscillograms

Čia guli mažas (~500kb XVid AVI) filmukas su oscilogramomis. Atkreipiam dėmesį į tai, kad kai tranzas ir išjungtas, ant jo vistiem matosi kitos fazės impulsas. O jei dar bloga apkrova, blogai sukonstruota schema dar atsiranda ir visokių trugdžių kurie tikrai gali susprogdinti galios mosfetus. Kurdami tokios schemas reikia numatyti viską- pradedant topologija, baigiant plokštės darymą. Kai kada, parazitinius generavimus galima užgesinti pajungiant “snublerius”- paprastutes RC grandines, kurios užtrumpina tuos aukšto dažnio signalus.

O dabar išmintis iš interneto (laisvas vertimas vogto teksto):

  Half-bridge and full-bridge Push-pull Forward converter
minimalus mosfeto itampos reikalavimai maitinimo itampa plius rezervas

230VAC*1,414 + 50V
=> 400V mosfets

dviguba maitinimo itampa plius didelis rezervas

2*230VAC*1,414+100V
=> 800V mosfets

dviguba maitinimo itampa plius didelis rezervas

2*230VAC*1,414+100V
=> 800V mosfets

kiti mosfetu parametrai vidutines itampos mosfetai 400V , ir <0.2 Ohm vidine varža => didele
srove, mažai nuostuoliu
aukštos itampos fetai 800V, >2.0 Ohm vidine varža => mažos sroves
, daug nuostoliu
aukštos itampos fetai 800V, >2.0 Ohm vidine varža => mažos sroves
, daug nuostoliu
vidinis mosfetu diodas: turi buti išjungtas, nes kitaip sprogs

jei maitinimas <50VDC:
vienas atvirkšcias šotki diodas

jei maitinimas >50VDC:
labiau komplikuota – nuosekliai mažos itampos dideles sroves šotki diodas,
vienas lygiagreciai aukštos itampas, ultragreitas diodas. (<250ns)

gali buti ignoruojamas gali buti ignoruojamas
realios galios reikšmes daug kW keli 100W keli 100W
kas apriboja galios lygi base-feed transformer core power handling capability (saturation, induced
currents causing core heating)

mosfet current ratings (paralleling more than two fets, the right way, is
tricky)

mosfet switching and conduction losses

primary leakage inductance, huge voltage spikes (up to kV range) at increasing
power levels, makes use of snubber circuits imperative (=>high heating
losses and low efficiency, and high circuit complexity)

>=800V
fets are expensive and can’t handle much current

(same as for push-pull)
transformer design needs only one primary

transformer design non-critical

needs two identical and well coupled primaries, critical design – requires
skills! ;o)
critical design, only one primary

only the first quadrant of the ferrite cores’ B-H curve is used, i.e. "transformer
core running at only half of what it could handle".

base feed transformer volt-seconds (Vs) imbalance: full-bridge: minimal danger of saturation, Vs imbalance mainly due to
slight differences in mosfet channel on-resistances

half-bridge: if the primary has a series coupling capacitor, then Vs imbalance
is no big problem

major problems with Vs imbalance as fully identical pri windings are almost
impossible to make. The driver circuit absolutely must have pulse-by-pulse
current limiting.
 
tuneable down to DC / 0Hz yes, by using a primary series coupling capacitor no (short-circuit at 0 Hz) no (short-circuit at freq towards 0 Hz)
problems grief with gate drive transformers or floating channel mosfet driver ICs
or optocoupler-tweaking
grief with mosfets constantly dying on overvoltage, gate drive noise (same as for push-pull)

2 replies on “TL494 – universali mikroschema, 6 dalis”

Leave a Reply

Your email address will not be published. Required fields are marked *